F Distribution

and

P Value

What is **F Distribution**?

The F-distribution is a probability distribution used in hypothesis testing to determine the equality of variances from normally distributed populations.

The F distribution has the following properties:

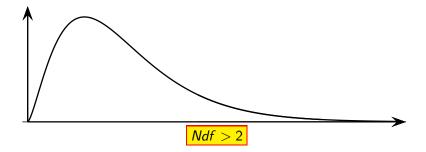
- The density curve is not symmetric.
- ► The density curve is not bell-shaped.
- ► The density curve is skewed to the right.
- ▶ The total area under the density curve is 1.
- ▶ It comes with two different degrees of freedom.

▶ The two degrees of freedom are referred to as

numerator degrees of freedom (Ndf) and

denominator degrees of freedom (Ddf).

Here is how the F distribution curve look like.



Where does **F Distribution** curve peak?

- ▶ When 0 < Ndf < 2, the F distribution curve $\rightarrow \infty$ as $F \rightarrow 0$.
- ▶ When Ndf = 2, the F distribution curve begins at (0,1) and decreasing from there.
- ▶ When Ndf > 2, the F distribution curve has a peak point at

$$F = \frac{(Ndf - 2) \cdot Ddf}{Ndf \cdot (Ddf + 2)}$$

Find the F value where F distribution curve peak with Ndf = 5 and Ddf = 8.

Solution:

We simply plug in the given *Ndf* and *Ddf* in the equation and simplify.

$$F = \frac{(Ndf - 2) \cdot Ddf}{Ndf \cdot (Ddf + 2)} = \frac{(5 - 2) \cdot 8}{5 \cdot (8 + 2)}$$
$$= \frac{24}{50} = 0.48$$

The peak value of the F distribution curve with the given information takes place at the F value of 0.48.

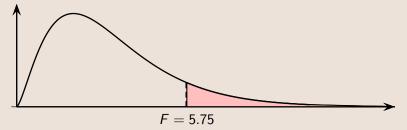
Probability with *F* Distribution using TI:

ProbabilityType	TI Command
P(F < a)	Fcdf(0, a, Ndf, Ddf)
P(F > b)	Fcdf(b, E99, Ndf, Ddf)
P(a < F < b)	Fcdf(a, b, Ndf, Ddf)
P(F < a or F > b)	1-Fcdf(a, b, Ndf, Ddf)

Find P(F > 5.75), Ndf = 4, and Ddf = 10. Round to 3-decimal places.

Solution:

We start by drawing the F distribution curve, then shade and label accordingly.

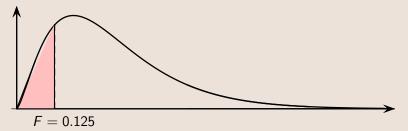


Now we can use the TI command, $P(F > 5.75) = Fcdf(5.75, E99, 4, 10) \approx 0.011$.

Find P(F < 0.125), with Ndf = 3, and Ddf = 12. Round to 3-decimal places.

Solution:

We start by drawing the F distribution curve, then shade and label accordingly.

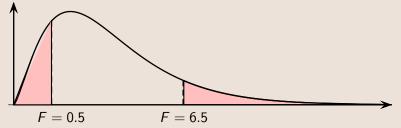


Now we can use the TI command, $P(F < 0.125) = Fcdf(0, 0.125, 3, 12) \approx 0.056$.

Find P(F < 0.5 or F > 6.5), with Ndf = 8, and Ddf = 8. Round to 3-decimal places.

Solution:

We start by drawing the F distribution curve, then shade and label accordingly.



Now we can use the TI command,

 $P(F < 0.5 \text{ or } F > 6.5) = 1 - Fcdf(0.5, 6.5, 8, 8) \approx 0.181.$

What is **P Value**?

Assuming H_0 is valid

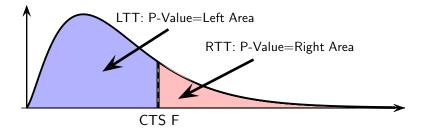
It is the probability that the observed data support the null hypothesis.

A low p-value provides evidence against the null hypothesis, often resulting in rejecting the null hypothesis.

A high p-value suggests the observed data are consistent with the null hypothesis, often resulting in fail to reject the null hypothesis.

The p-value suggests the smallest level of significance α for which the null hypothesis H_0 would be rejected and the alternative hypothesis H_1 would be supported.

P Value & CTS F:



For the TTT, Find the area on both sides of F

then $P - Value = 2 \cdot$ Smaller Area.

P Value & CTS F with TI: ■

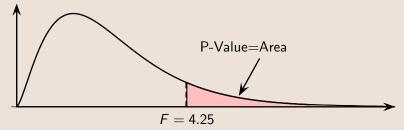
2ND , VARS , ↓ , Fcdf

Testing Type	TI Command
Right-Tail Test	Fcdf(CTS, E99, Ndf, Ddf)
Left-Tail Test	Fcdf(0, CTS, Ndf, Ddf)
Two-Tail Test	• Find the area on both sides of F
	Multiply the smaller area by 2

Find the corresponding P-Value for a Right-Tail Test with CTS F = 4.25, Ndf = 5, and Ddf = 9. Round to 3-decimal places.

Solution:

We start by drawing the F distribution curve, then shade and label accordingly.

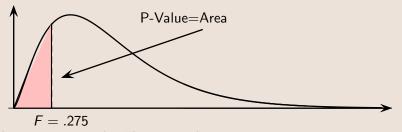


Now we can use the TI command, $P - Value = Fcdf(4.25, E99, 5, 9) \approx 0.029$.

Find the corresponding P-Value for a Left-Tail Test with $CTS \ F = 0.275$, Ndf = 8, and Ddf = 10. Round to 3-decimal places.

Solution:

We start by drawing the F distribution curve, then shade and label accordingly.



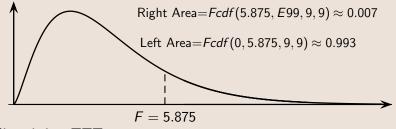
Now we can use the TI command,

 $P - Value = Fcdf(0, .275, 8, 10) \approx 0.040.$

Find the corresponding P-Value for a Two-Tail Test with $CTS \ F = 5.875$, Ndf = 9, and Ddf = 9. Round to 3-decimal places.

Solution:

We start by drawing the F distribution curve and clearly label.



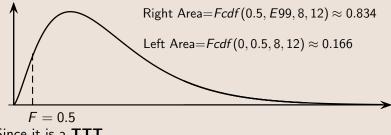
Since it is a TTT,

$$P-Value=2 \cdot {f Smaller Area} pprox 2 \cdot 0.007 pprox 0.014$$

Find the corresponding P-Value for a Two-Tail Test with CTS F = 0.5. Ndf = 8. and Ddf = 12.

Solution:

We start by drawing the F distribution curve and clearly label.



Since it is a **TTT**.

$$P-Value=2 \cdot {
m Smaller Area} \approx 2 \cdot 0.166 \approx 0.332$$